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Goal programming, a mathematical tool for the analysis of problems involving multiple, 
conflicting objectives arising in the fields of operations research and systems analysis, is 
employed to find the numerical solution of certain Navier-Stokes equations. As in the 
collocation method, the proposed technique involves approximating the unknown solution by 
a set of trial functions containing unknown coefftcients. The technique then minimizes in a 
weighted residual sense the absolute value deviations of the differential equation residual by 
the modified pattern search algorithm for nonlinear goal programs. One important feature of 
this method in solving nonlinear problems is that it does not require the initial programming 
effort needed to set up a Newton method (or a similar approach) based upon the collocation 
approximation for the differential equation. Further, this approach is fundamentally more 
general than the collocation method because the number of undetermined parameters can be 
less than the number of spatial points. It is shown that the approximate solution to a 
Navier-Stokes equation with only a low order trial function compares favourably to other 
methods of weighted residual results. 

1. INTRODUCTION 

The method of weighted residuals (MWR) has long been considered one of the 
main techniques for developing approximate solutions to operator equations. In all of 
these problems, the unknown solution is approximated by a set of trivial functions 
containing unknown coefftcients. These coefficients are chosen by various error 
criteria to give the “best” approximation for the selected family. Obviously, there is a 
wide choice in selecting the error criteria. The most commonly used methods in this 
group are the collocation method, the least squares method, the Galerkin method, the 
subdomain method and the orthogonal collocation method [ 11. 

It should be noted that except for the collocation methods, the application of other 
MWR techniques to nonlinear problems often requires the evaluation of integrals of 
the trial function [ 11. In the collocation method, it is only necessary to evaluate the 
residual at the collocation points. The problem is thus reduced to the solution of a set 
of nonlinear algebraic equations. Unfortunately, it is well known that the solution of 
systems of nonlinear equations can be extremely complicated. Thus there is clearly a 
need for alternative methods of solving nonlinear problems which involve fewer 
program changes and also reduce the preparation and computation effort. 

103 
0021.9991/81/01010349$02.00/0 

Copyright c 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



104 K. Y. K. NG 

The goal programming approach presented here offers a promising alternative to 
the approximate solutions of nonlinear problems. Goal programming [2], first 
introduced by Charnes and Cooper [3], is a modification and extension of linear 
programming. It is a tool for the analysis of problems invoving multiple, conflicting 
objectives arising in the fields of operations research and systems analysis. The goal 
programming method for solving nonlinear boundary value problems resembles the 
collocation technique in that it does not require the evaluation of integrals of the trial 
function. The criterion minimizes in a weighted residual sense the absolute value 
deviations of the differential equation residual by the modified pattern search 
algorithm [2]. It should be mentioned that our method of minimizing the residuals is 
novel. A similar approach employing Powell’s nonlinear least squares minimization 
method has been reported by Eason and Mote [4]. Several other authors [S-7] have 
also applied minimization techniques to a least squares differential equation 
formulation. Our approach differs from these techniques in that the sum of the 
absolute value deviations of the differential equation residual is minimized (in a 
weighted residual sense); in [4], the sum of the squared residuals at individual points 
is minimized instead. 

The advantage of our proposed method is that it offers a solution to complicated 
problems without the initial programming effort required to set up a Newton method 
(or a similar approach) based upon the collocation approximation for the differential 
equation. Furthermore, this minimization approach is fundamentally more general 
than the collocation method because the number of undetermined coefftcients can be 
less than the number of collocation points. Last, the goal programming technique for 
nonlinear problems can be written as general purpose software, in which problem 
changes affect only short subprograms and input data. 

In Section 2 we present the methodolgy for the solution of nonlinear boundary 
values problems by means of the goal programming approach. In that section we also 
discuss problems concerning parameter selection, namely, the distribution of 
collocation points and the determination of the number of trial functions that will 
yield a satisfactory solution. In Section 3, we apply the method to finding the 
numerical solutions of certain Navier-Stokes equations which arise in the description 
of fluids near stagnation points. It will be demonstrated that even with low order trial 
functions, the solutions obtained compare favourably to other MWR results. 

2. METHODOLOGY 

Consider the boundary value problem 

= 0, (2.1) 

(2.2) Bu = 0 on boundary, 
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where F is a nonlinear differential operator, and B is a boundary operator. A trial 
function is taken in the form [ 1 ] 

N 

V = C CiUiy 

i=l 
(2.3) 

BUi = 0 on boundary, (2.4) 

where ci, i = 1,2 ,..., N, are the unknown parameters. The trial function (2.3) is 
substituted into the differential equation (2.1) to form the residuals 

R(Ciy x)=F $ CiUiy 2 pi s,***, 
N d”Ui 

X, 
i=l i=l = -1 i=l 

ci (jy * 

If the trial functions were the exact solution, the residual R(ci,x) would be zero. As 
pointed out earlier, there exist a number of techniques for determining the values of 
ci. In this paper we demonstrate the application of goal programming towards the 
determination of the values Ci. 

First we define the weighted integrals of the residual as 

where Wj is the displayed Dirac delta function wj = 6(x-xi). The weighted integral 
of residual (2.5) then becomes R(c,, x1). Instead of setting the weighted residual to 
zero at N specified collocation points as in the orthogonal collocation method, we 
choose M collocation points, x,, j = 1, 2 ,..., M, with M > N. We then anticipate the 
trial function v to approximate the solution of (2.1) as closely as possible at the M 
chosen collocation points xi. This is achieved by minimizing the sum of the absolute 
value derivations R(ci, x,) over the chosen M collocation points. In other words, we 
are to find 

yp 5 IR@,,xjl. (2.6) 
i=I,Z,...,N 

j=l 

A closer look at the formulation of Eq. (2.6) reveals that we are actually finding the 
optimum values of ci with respect to the L, norm. Equation (2.6) can be rewritten in 
the goal programming formulation 

min 5 (nj + Pj) 

j=l 

subject to 
R(Ci, XI) + n, - PI = 0, 

(2.7) 

R(C,,+)+n,-pp,=O, 
. . . . . . . . . . . . . ) W-9 

R(Ci,XM) + ttM-p,+,=Op 
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where n,i = deviational variables representing negative deviations from goal level j 
(nj > 0); pi = deviational variables representing positive deviations from goal level j 
(pj > 0). That is, in the above formulation, the ci)s are chosen such that the sum of 
the absolute value deviations from each objective having a goal of value “zero” is 
minimized. (When solving systems (2.7), (2.8), the minimum is assumed to be 
attained if the achievement function, Eq. (2.7), is less than a certain tolerance factor.) 

In essence, our method requires the choice of the form of u in Eq. (2.3) and a set of 
collocation points. Then M residuals ]R(ci, Xj)l are determined by substituting the N- 
term approximation u into (2-l), (2.2). A residual is included for each equation (2.1), 
(2.2) at every point appropriate to each. A subroutine that calculates C (R(c,, Xj)l for 
a given initial approximation is all that is necessary to solve (2.7), (2.8) by the 
modified pattern search technique for the nonlinear goal programs. The pattern 
search technique iteratively searches for the minimum sum of C ]R(c,, xj)l. It 
increases its search step size if previous searches have been successful and decreases 
the step size otherwise. The procedure terminates when the convergence criterion is 
satisfied. The technique so described is robust and efficient because it does not 
require the evaluation of any derivative. Further, it is a particularly easy method to 
program. Detailed descriptions of the technique can be found in [2]. 

In Section 3, we address some problems that arise in the goal programming 
solution, namely, the choice of collocation points and the determination of the 
number of trial functions that will yield a satisfactory solution. Experience with the 
collocation method indicates that the collocation points xj in (2.5) may be equally 
spaced, or concentrated in areas where the solution increases rapidly. We will adopt 
this experience obtained from the collocation method to the goal programming 
technique. A worked example in Section 3 illustrates this fact. 

Because of the absence of rigorous bounds on the error of the approximate 
solutions for reasonably small, finite N, users of the MWR often assume that small 
root mean square (rms) residuals are good indicators of accurate solutions. This 
indicator will be employed as our criterion for the accuracy of the goal programming 
solution. (It should be mentioned that this is only an indication of the error and not a 
rigorous bound.) In some problems, it is possible to calculate rigorous bounds on the 
difference at any point between the actual solution and the approximate solution. 
Detailed discussions of error bounds can be found in [ 1, 8, 151. Last, it is worth 
mentioning that nonlinear problems often have multiple solutions, which can usually 
be distinguished from convergence failure by inspecting C IR(ci, xj)l. 

Now, we are ready to outline the steps for the determination of the number of trial 
functions required to provide a satisfactory solution: 

Step 1. Assume an educated guess on the number of trial functions N in u, Eq. 
(2.3). Go to step 2. 

Step 2. Solve for ci by means of the modified pattern search algortihm. Go to 
step 3. 

Step 3. Evaluate the rms residual. If it is less than or equal to a prespecified 
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tolerance factor, then stop and the solution is given by v with the ci evaluated in step 
2. Or else, set N = N + 1, and go to step 2. 

The above procedure for the determination of the approximate solutions to certain 
Navier-Stokes equations is demonstrated in Section 3. 

3. EXAMPLES 

In this section we apply the goal programming methodology to find the solution of 
nonlinear boundary value problems arising in studies of fluid motion. 

(i) We consider the numerical solution of the Navier-Stokes equation for the 3- 
dimensional, axisymmetric case of flow with stagnation. We are interested in 
obtaining the solution of a problem where a fluid stream impinges on a wall at right 
angles to it and flows away radially in all directions. Such a case occurs in the 
neighbourhood of a stagnation point of a body of revolution in a flow parallel to its 
axis. The governing system of equations is given by [9] as 

p+2p+ l-f’2=0 (3.1) 

with boundary conditions 

f(0) = f’(0) = 0, lii f’(x) = 1, (3.2) 

where f is the dimensionless dependent (similarity) variable related to the velocity 
distribution of the flow at the stagnation point and x is a similarity variable. Let the 
ui in (2.3) be given by 

and 

u](x) = - 1 + ePX + x, 

ui(x) = (i - 1) - ie-” + e-‘“, i = 2, 3,..., 

v(x) = c, u,(x) + c2uz(x) + CJz+(X) + ‘.. . (3.3) 

It is obvious that v satisfies the boundary conditions (3.2). In this example, we desire 
that the rms residual (taken over 16 evenly distributed points from 0 to 1.5) be less 
than 1 x 10-l. Following the procedure outlined in Section 2 for the determination of 
the number of trial functions required to yield a satisfactory solution, we assume that 
the trial function (3.3) consists of only 3 terms. Applying the goal programming 
technique on (3.3) with 12 suitably chosen collocation points, namely, 

x, = 0.05, x2 = 0.1, x3 = 0.2, x4 = 0.3, x, = 0.4, X6 = 0.5, 

x, = 0.6, x8 = 0.7, x9 = 0.8, xl0 = 0.9, xl, = 1.0, xl2 = 1.5, 
(3.4) 

581/39/l-8 
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initial guess c, = 1.0, c2 = -0.1, c3 = - 0.1, and the tolerance factor for the 
achievement function (2.7) as 5 x lo-“, the rms residual obtained is 1.33 x 10-l. By 
the procedure described in Section 2, we are to increase the number of independent 
functions by one. Again with the set of collocation points as given by (3.4), initial 
guess c, = 0.7, cz = -0.2, cj = cq = 0.1, and the tolerance factor for (2.7) as 
5 X 10m3, the approximate solution is given by 

u(x) = l.l06247u,(x) - O.l99996u,(u) - 0.224996&) + O.O99997u,(x) (3.5) 

and the rms residual is equal to 9.712 X 10P2. The computational time for generating 
(3.5) on an IBM 370/168 was 5.61 sec. It is interesting to compare the results of the 
numerical calculations obtained by goal programming and the result obtained by 
Frossling (see [9]), in terms of the wall shear stress f”(0). The goal programming 
solution for this case is S”(0) = 1.3 12506 and the solution obtained by Frossling is 
f”(O) = 1.3 12. 

Next, we discuss the effect of the distribution of collocation points on the accuracy 
of the approximate solution. Again tie assume that the trial function V(X) is to consist 
of 4 terms, with initial guess for ci as 0.7, -0.2, 0.1, 0.1, tolerance factor for (2.7) as 
5 X lo-‘, and the collocation points given by 

0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8, 1.0, 1.5. 

The goal programming solution obtained has a rms residual equal to 1.784 x 10-l 
and f”(0) = 1.274932. The explanation of the high rms residual might be the 
unevenly distributed collocation points. 

Finally, we are interested in determining the number of collocation points required 
to produce a satisfactory solution to (3.1), (3.2). A computer experiment was 
performed with the trial function consisting of 4 terms and with initial guess and 
tolerance factor for the achievement function the same as those given above. 
However, we are to evaluate (2.7) at 7 collocation points only, namely, 

0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5. 

The goal programming solution obtained has a rms residual 9.728 X 10m2 and 
f”(0) = 1.265628. It is easily noted that if the number of collocation points is 
decreased, the rms residual increases slightly and the wall shear stress is less 
accurate. 

In concluding our results for this example, the rms residual will decrease as the 
number of collocation points increases. (Nevertheless, there is a trade-off between the 
desired accuracy of the approximate solution and the computational time.) Also, in 
the absence of a theory on the distribution of spatial points that yields a satisfactory 
solution, evenly distributed collocation points should be preferred. Of greater impor- 
tance, it is demonstrated that with only 4 terms in the trial function, the wall shear 
stress obtained by the goal programming technique is accurate to within 3 decimal 
places compared with the classical solution given by Frdssling (see [9]). 
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(ii) In this example we consider the goal programming solution of a viscoelastic 
boundary layer equation, which arises in the description of a second order fluid near 
a two-dimensional stagnation point [lo], 

f”’ +ff” + 1 -f r* + QJ-“” _ 2f If’” +f”‘) = 0, (3.6) 

f(0) = f’(0) = 0. lim f’(x) = 1. (3.7) X~to 

Here f is a dimensionless stream function, k is a non-negative elastic parameter and x 
is a similarity variable. On physical grounds we also assume that lim,,f”“(x) exists 
and is finite. Thus the evaluation of (3.7) at x = 0 gives 

f”‘(0) = - (1 + kf”*(O)). 

Throughout this example we will assume k to be equal to 0.2, since we are only 
interested in the behaviour of a “weakly” viscoelastic fluid. Approximate solutions to 
the system (3.6~(3.7) have been obtained by the Karman-Pohlhausen method [ 111, 
the perturbation method [ 121, and the orthogonal collocation method [ 131. It is 
demonstrated in [ 13 ] that standard finite difference techniques such as the 
Runge-Kutta and the predictor-corrector methods are highly unstable when applied 
to Eqs. (3.6)-(3.7). Hence accurate finite difference solutions have not been obtained. 

In order to compare the goal programming solution of (3.6), (3.7) with other 
MWR results, we follow Serth [ 131 and choose the trial function to be the set of 
Laguerre functions which constitutes a complete orthonormal system in (0, cn) [ 141, 
that is, 

v(x) = - 1 + x + exp(-x) +x2 exp 
( 1 

-5 g CPW), 
i-l 

(3.8) 

where Li(x) = (l/i!) exp(x)(d/du)’ exp(- x xi ) is the Laguerre polynomial of degree i 
[ 141. The coefficients c1 are determined by nonlinear goal programming at the set of 
collocation points given by (3.4). In addition, we let the tolerance factor for the 
achievement function (2.7) be 2 x 10m4, the number of terms in the trial function 
(3.8) be 5, and the initial guess for ci be c, = c3 = c5 = 1.0, c, = c, = - 1.0. The 
computing time for generating the approximate solution v on an IBM 370/168 was 
6.79 set, and the coefficients ci are found to be 

c, = 0.3783 10, c* = - 0.470311, c3 = 1.089032, 

Cd = - 1.074959, c5 = 0.37 1872. 

Our results show that the rms residual is 9.646 X lo-* (taken over 16 uniformly 
distributed points from 0 to 1.5) and f”(0) = 1.58788, using only 5 independent 
Laguerre functions. By means of the orthogonal collocation method, however, Serth 
[ 14) found that using 5 Laguerre functions, f”(0) = 1.56640; using 12 Laguerre 
functions, f”(0) = 1.58678; using 16 Laguerre functions, f”(0) = 1.58800; and 
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finally, using 24 Laguerre functions, f”(0) = 1.587 19. It is amazing to find that with 
the trial function containing only 5 independent functions, the goal programming 
technique provides a solution that is comparable in accuracy to the orthogonal 
collocation method employing, a trial function involving 12 independent functions. 

4. CONCLUSION 

In this paper we have illustrated that goal programming can be applied to find the 
numerical solution of certain Navier-Stokes equations. The numerical results 
obtained are extremely encouraging. It tan be seen from the worked example in 
Section 3 that the goal programming solution is notably more accurate and 
computationally simpler than the orthogonal collocation solution. However, the 
relatively low computational times for the worked examples are dependent on the 
initial choice of ci . It is well known that the better the choice of ci, the faster the 
search will converge. Often, an educated guess on the parameters can be made by 
examining equations that are similar in type. For example, from experience in dealing 
with the Blasius equation and the Falkner-Skan equation, we would expect the wall 
shear stressf”(0) in our examples to lie in the range of 1 and 2. A careful algebraic 
manipulation on the initial guess of ci so that f”(0) falls in the range of 1 and 2 
would definitely save much computational effort. 

When applying the method of goal programming, the main difficulty is the choice 
of trial functions. (In fact this also applies to the method of weighted residuals.) For 
simple boundary value problems, the choice of trial functions may be quite obvious 
[ 11. However, for certain nonlinear equations, the choice of appropriate approximate 
functions often requires immense physical intuition as well as linearization 
techniques. In the event that prior information on the solution profile of the nonlinear 
equation is lacking, an educated guess on the trial modes can be made by employing 
the orthogonal polynomials. To justify this statement, a carefully programmed, tuned 
and tested code on the goal programming methodology with the orthogonal 
polynomials as the trial functions should be applied to the solution of various 
nonlinear equations. This is under investigation at present and the results will be 
discussed in a subsequent paper. 

As a last remark, the goal programming formulation is independent of the form of 
the differential system, so that changing from one problem to another is easy. Both 
examples were run with the same computer program, requiring only a slight change 
in a subprogram and the input data. Thus the goal programming technique for 
solving nonlinear problems is robust and efficient. It definitely warrants more 
attention and further research. 

ACKNOWLEDGMENTS 

The author wishes to thank the referees for their helpful comments concerning an earlier version of 
this article. 



SOLUTION OF NAVIER-STOKES EQUATIONS 111 

REFERENCES 

1. B. A. FINLAYSON, “The method of Weighted Residuals and Variational Principles,” Academic 
Press, New York/London, 1972. 

2. J. P. IGNIZIO, “Goal Programming and Extensions,” Heath (Lexington Books), Lexington, Mass., 
1976. 

3. A. CHARNES AND W. W. COOPER, “Management models and Industrial Applications of Linear 
Programming,” Vols. I, II, Wiley, Sons, New York, 1961. 

4. E. D. EASON AND C. D. MOTE, JR., Int. J. Num. Meth. Eng. 11 (1977), 641-652. 
5. H. J. ECKERT, JR., “Piecewise Polynomials and the Methods of Weighted Residuals for Nonlinear 

Ordinary Differential Equations,” Ph. D. thesis, University of Illinois, 1969; University Microfilms 
No. 70-839. 

6. T. I. ALLEN, Chem. Phys. Lett. 13 (1972), 504-506. 
7. J. R. PARTIN, “Numerical Techniques for Applying Averaging Methods to Nonlinear Ordinary 

Differential Equations,” Ph. D. thesis, University of Texas, 1965; University Microfilms No. 
65-10758. 

8. E. D. EASON, Int. J. Num. Meth. Eng. 10 (1976), 1021-1046. 
9. H. SCHLICHTING, “Boundary-Layer Theory,” pp. 91-92, McGraw-Hill, New York, 1968. 

10. D. W. BEARD AND K. WALTERS, Proc. Cambridge Phil. Sot. 60 (1964), 667. 
11. M. H. DAVIES, Z. Angew. Math. Phys. 17(1966), 189. 
12. J. PEDDIESON, AZChE J. 19 (1973), 377. 
13. R. W. SERTH, J. Eng. Math. 8, No. 2 (1974), 89-92. 
14. M. ABRAMOWITZ AND I. A. STEGUN, in “Handbook of Mathematical Functions,” Chaps. 22, 25. 

National Bureau of Standards, Applied Mathematics Series, No. 55, Nat. Bur. Stand., Washington, 
DC., 1966. 

15. J. VILLADSEN AND M. L. MICHELSEN, “Solution of Differential Equation Models by Polynomial 
Approximation,” Prentice-Hall, Englewood Cliffs, N.J., 1978. 


